
Optimization Opportunities and Pitfalls when
Implementing High Performance 2D Convolutions

Ian Wainwright

High Performance Consulting Sweden

ian.wainwright@hpcsweden.se

S4297

1 2 3 1

4 5 2 3

4 1 1 5

1 2 5 2

3 3 1

1 1 2

1 2 3

2D Convolutions
What are they?

Image Filter Output

For all image pixels
 For all filter elements
 output += In(x,y)*Fil(x,y)

1 2 3 1

4 5 2 3

4 1 1 5

1 2 5 2

3 3 1

1 1 2

1 2 3

2D Convolutions
What are they?

Image Filter Output

For all image pixels
 For all filter elements
 output += In(x,y)*Fil(x,y)

1 2 3 1

4 5 2 3

4 1 1 5

1 2 5 2

3 3 1

1 1 2

1 2 3

2D Convolutions
What are they?

Image Filter Output

* 3 * 3 * 1

* 1 * 1 * 2

* 1 * 2 * 3

For all image pixels
 For all filter elements
 output += In(x,y)*Fil(x,y)

2D Convolutions
What are they?

1 2 3 1

4 5 2 3

4 1 1 5

1 2 5 2

3 3 1

1 1 2

1 2 3

Image Filter

* 3 * 3 * 1

* 1 * 1 * 2

* 1 * 2 * 3

Output

3 6 3

4 5 4

4 2 3

∑ = 34

34

For all image pixels
 For all filter elements
 output += In(x,y)*Fil(x,y)

2D Convolutions

Tesla K20
GFLOPS = 3521 GFLOPS
BW 208 GB/s = 52 GigaFLOAT/s
 3521 GFLOPS/ 52 GFLOAT/s = 67 FLOPS / FLOAT is the theoretical
break-even between bandwidth bound and compute bound.

The number of computations per output element in a 2D convolution is
filter size * filter size * 2. filter size = √(2 * 67) = 11.5
 break-even between compute and bandwidth bound.
A 13*13 2D convolution is in theory compute bound for the Tesla K20.
Smaller sizes are bandwidth bound.

”192 single‐precision floating point units”

”32 load/store units (LD/ST)”

Kepler 110 Whitepaper

 6 FMADs per LD/ST

The Tesla K20

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

The 2D Convolutions Implemented

Filter Input image

No const
__restrict__

const
__restrict__ on
filter only

const
__restrict__ on

input only

const
__restrict__ on

both

No restrict Filter restrict Input restrict Both restrict

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Filter directly
from global

Single output per thread

For all image pixels
 For all filter pixels
 output += In(x,y)*Fil(x,y)

Map to each thread
For loop for each thread

Everything in global memory

For all image pixels
 For all filter pixels
 output += In(x,y)*Fil(x,y)

FMAD LD LD 2 LD per FMAD

GK 110: 6 FMADs per LD/ST

FPU1 FPU2 FPU3 FPU4 FPU5 FPU6 LD/ST

LD In

LD Fil

FMAD LD In

LD Fil

FMAD

At best we will utilize
1/12 of the hardware

Map to each thread
For loop for each thread

Everything in global memory

Everything in global memory

Roughly 4%
utilization

5 7 9 11 13 15 17
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

U
ti
liz

a
ti
o
n
 %

Filter height and width.

No restrict

input restrict

filter restrict

both restrict

No restrict

Filter restrict

Input restrict

Both restrict

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Filter directly
from global

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Single output per thread

Filter via
constant memory

Filter in constant, image in global

5 7 9 11 13 15 17
0

1

2

3

4

5

6

7

8

U
ti
liz

a
ti
o
n
 %

Filter height and width.

No restrict

input restrict

Roughly 7%
utilization

No restrict

Input restrict

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Filter via
constant memory

Multiple output per thread

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Input via global
memory

Multiple output per thread

Share filter
via __shfl

Share filter

Share filter via __shfl,
image in global

9 11 13 15 17 19
0

1

2

3

4

5

6

Filter Hight and Width

U
ti
liz

a
ti
o
n
 %

no restrict

filter restrict

input restrict

both restrict

No restrict

Filter restrict

Input restrict

Both restrict

Share filter

Share filter
via __shfl

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Single output per thread

Filter via
constant memory

Share filter

Share filter
via __shfl

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Filter via
constant memory

For now only in X (width)

Share filter

Share filter
via __shfl

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

With and without const __restrict__

Not share filter

Input via global
memory

Filter via
constant memory

Multiple output per thread

Not share filter

Filter via
constant memory

For now only in X (width)

For all image pixels
 For all filter elements
 output += In(x.y)*Fil(x,y)

For all image pixels
 For all filter elements
 fil = Fil(x,y)
 output0 += In(x+0,y)*fil
 output1 += In(x+1,y)*fil
 output2 += In(x+2,y)*fil ...

Map one thread to several outputs
For loop for each thread

Map to each thread
For loop for each thread

Multiple outputs per thread

For all image pixels
 For all filter elements
 fil = Fil(x,y)
 output0 += In(x+0,y)*fil
 output1 += In(x+1,y)*fil
 output2 += In(x+2,y)*fil ...

1 LD per FMAD

GK 110: 6 FMADs per LD/ST

FPU1 FPU2 FPU3 FPU4 FPU5 FPU6 LD/ST

LD In

LD Fil

FMAD LD In

LD Fil

FMAD

FMAD

FMAD

At best we will utilize
1/6 of the hardware

LD In

LD In

Place filter value in
register, i.e. only 1 LD

Multiple outputs per thread

1 2 3 4 5 6 7 8 9 11 13 15
0

0.5

1

1.5

2

2.5

3

3.5

No restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter size:3

Filter size:5

Filter size:7

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

1 2 3 4 5 6 7 8 9 11 13 15
0

1

2

3

4

5

6

7

8

9

Input restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter in constant, image in global,
multiple outputs per thread

Still no reuse
of input data

No restrict Input restrict

Input via global
memory

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Filter via
constant memory

Multiple output per thread

Share filter
via __shfl

Input via global
memory

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Filter via
constant memory

Multiple output per thread

Share filter
via __shfl

Store values per
thread in regs

LD all In

LD filter

LD all In

LD filter

For all image pixels
 For all filter elements
 fil0 = Fil(x+0,y);
 in0 = In(x+0,y); in1 = In(x+1,y)...
 output0 += in0*fil0
 output1 += in1*fil0
 output2 += in2*fil0 ...

FPU1 FPU2 FPU3 FPU4 FPU5 FPU6 LD/ST

FMAD

FMAD

FMAD

FMAD

FMAD

FMAD

FMAD

Filter-size*2
operations per load

Load filter into register.

Do all FMAs.

Load all input elements
into register.

LD all In

LD filter

FMAD FMAD

1 2 3 4 5 6 7 8 9 11 13
0

5

10

15

20

25

30

35

Input restrict

Number of outputs per thread in X
U

ti
liz

a
ti
o
n
 %

Filter size:3

Filter size:5

Filter size:7

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

1 2 3 4 5 6 7 8 9 11 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter size:3

Filter size:5

Filter size:7

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

Filter via const, reusing thread
local input, multiple outputs per thread

No restrict Input restrict

From 3 to 30 % utilization by
storing input values in registers

if input image uses
const __restrict__

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Not share filter

Input via global
memory

Filter via
constant memory

Multiple output per thread

Single output per thread

With and without const __restrict__

The 2D Convolutions Implemented

Not share filter

Input via global
memory

Share filter

Filter via
constant memory

Single output per thread Multiple output per thread

Filter

Filter directly
from global

Single output per thread

Input image

Store values per
thread in regs

Share filter
via __shfl

With and without const __restrict__

Input via global
memory

Multiple output per thread

Share filter
via __shfl

Share filter

Sharing filter via shfl, reusing thread
local input, multiple outputs per thread

1 2 3 4 5 6 7 8 9 11 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No restrict

Number of outputs per thread in X

U
ti
li
z
a
ti
o
n
 %

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

1 2 3 4 5 6 7 8 9 11 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Filter restrict

Number of outputs per thread in X

U
ti
li
z
a
ti
o
n
 %

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

No restrict Filter restrict

1 2 3 4 5 6 7 8 9 11 13
0

5

10

15

20

25

30

Both restrict

Number of outputs per thread in X

U
ti
li
z
a
ti
o
n
 %

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

1 2 3 4 5 6 7 8 9 11 13
0

5

10

15

20

25

30

Input restrict

Number of outputs per thread in X

U
ti
li
z
a
ti
o
n
 %

Filter size:9

Filter size:11

Filter size:13

Filter size:15

Filter size:17

Filter size:19

Input restrict Both restrict What does the code
look like?

Sharing filter via shfl, reusing thread
local input, multiple outputs per thread

From 3 to 30 % utilization by
storing input values in registers

if input image uses
const __restrict__

LD all In

LD filter

LD all In

LD filter

For all image pixels
 For all filter elements
 fil0 = Fil(x+0,y);
 in0 = In(x+0,y); in1 = In(x+1,y)...
 output0 += in0*fil0
 output1 += in1*fil0
 output2 += in2*fil0 ...

FPU1 FPU2 FPU3 FPU4 FPU5 FPU6 LD/ST

FMAD

FMAD

FMAD

FMAD

FMAD

FMAD

FMAD

Filter-size*2
operations per load

Load filter into register.

Do all FMAs.

Load all input elements
into register.

LD all In

LD filter

FMAD FMAD

2D convolutions

No hand-coded assembly
No explicit use of textures
No use of constant memory

Instead:
C++ Templates, const __restrict__, __shfl

4 lines of code for reading input into register
9 lines of code for filter loop (shown below)
9 lines of code for output clean-up
= 22 lines of code. Maintainable

~ 100 FMAD

Use compile time in inner loops

1 2 3 4 5 6 7 8 9 11 13
0

1

2

3

4

5

6

7

Both restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter size:7

Filter size:9

Filter size:11

Both restrict

Inner most loop is
run time

1 2 3 4 5 6 7 8 9 11 13
0

5

10

15

20

25

Both restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter size:7

Filter size:9

Filter size:11

Both restrict

Inner most loop is
compile time

 for(j=0; j<filtersize_compile_time_constant; j++)
 {
 const float present_filter_coef = __shfl(the_warps_filter_coefs, j);

 for(int output_index=0; output_index<T_NB_OUTPUTS_PER_THREAD; output_index++)
 {
 my_X_output[output_index] += present_filter_coef*my_input_values[output_index + j];
 }
 }

A factor of 3
difference in

performance!

Use compile time in inner loops

1 2 3 4 5 6 7 8 9 11 13
0

1

2

3

4

5

6

7

Both restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter size:7

Filter size:9

Filter size:11

1 2 3 4 5 6 7 8 9 11 13
0

5

10

15

20

25

Both restrict

Number of outputs per thread in X

U
ti
liz

a
ti
o
n
 %

Filter size:7

Filter size:9

Filter size:11

 for(j=0; j<filtersize_run_time_constant; j++)
 {
 const float present_filter_coef = __shfl(the_warps_filter_coefs, j);

 for(int output_index=0; output_index<T_NB_OUTPUTS_PER_THREAD; output_index++)
 {
 my_X_output[output_index] += present_filter_coef*my_input_values[output_index + j];
 }
 }

Both restrict

Inner most loop is
run time

Both restrict

Inner most loop is
compile time A factor of 3

difference in
performance!

1 2 3 1

4 5 2 3

4 1 1 5

1 2 5 2

3 3 1

1 1 2

1 2 3

3 3 1

1 1 2

1 2 3

2D Convolutions
What are they?

Image Filter Output

* 3 * 3 * 1

* 1 * 1 * 2

* 1 * 2 * 3

2D Convolutions

1 2 3 1

4 5 2 3

4 1 1 5

1 2 5 2

3 3 1

1 1 2

1 2 3

Image Filter

* 3 * 3 * 1

* 1 * 1 * 2

* 1 * 2 * 3

Output

3 6 3

4 5 4

4 2 3

∑ = 34

34

Extend reuse of input
data to Y also.

For all image pixels
 For all filter pixels
 fil = Fil(x,y)
 output0 += In(x+0,y)*fil
 output1 += In(x+1,y)*fil
 output2 += In(x+2,y)*fil
 output3 += In(x+3,y)*fil
 ...

Map one thread to several outputs
For loop for each thread

For all image pixels
 For all filter pixels
 fil = Fil(x,y)
 out00 = In(x+0,y+0)*fil
 out01 = In(x+0,y+1)*fil
 out10 = In(x+1,y+0)*fil
 out11 = In(x+1,y+1)*fil

Map one thread to several outputs in x and y
For loop for each thread

Reuse input in X and Y

Multiple outputs per
thread in X (width)

Multiple outputs
per thread in Y

(height)

Utilization heat map:
blue is low utilization,
red is high utilization.

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:7

1 2 3 4 5 6 7 8 9 11

4

3

2

1

Reuse input in X and Y

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:17

1 2 3 4 5 6 7 8 9 11

8

4

3

2

1

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:15

1 2 3 4 5 6 7 8 9 11

8

4

3

2

1

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:13

1 2 3 4 5 6 7 8 9 11

8

4

3

2

1

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:11

1 2 3 4 5 6 7 8 9 11

8

4

3

2

1

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:9

1 2 3 4 5 6 7 8 9 11

8

4

3

2

1

Utilization %

Number of outputs per thread in X

N
u
m

b
e
r

o
f

o
u
tp

u
ts

 p
e
r

th
re

a
d
 i
n
 Y

Filter size:7

1 2 3 4 5 6 7 8 9 11

4

3

2

1

Filter size 7

Filter size 13

Filter size 9

Filter size 15

Filter size 11

Filter size 17

Blue region in top right:
register spills.

Highest utilization when
we have 2 outputs in Y

per thread

High Performance Consulting Sweden

ian.wainwright@hpcsweden.se

2D Convolutions
Conclusion

DOs:
• Map multiple outputs to each thread.
• Use templates to hardcode loops as
non-constant indexed arrays ”[are] likely
to [be] placed in local memory”.
• Its helpfull to have a basic
understanding and model of the
hardware you’re working with.
• Keep looking at you assembly: What
lines map to register based compute, and
what is LD/ST integer spaghetti code?

DON’Ts:

• Use run-time sizes in inner most loops.
• Use textures or constant memory.
const __restrict__ gets the job done and
its very simple to use!

Any questions?

